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I. CHEMOSENSORY SYSIEMS

The chemical senses are commonly thought to fall
into three classes: (1) olfaction (smell), {2) gustation
(taste}, and (3) chemesthesis (the common chemical
sense). In birds, as in most other vertebrates, olfaction is
usually thought to be a telereceptor, capable of receiving
airtborme chemical stimuli in extreme dilution over rela-
tively great distances. Olfactory receptors are located
in the nasal conchae. Gustation, on the other hand,
usually requires more intimate contact between the
source(s) of chemical stimuli and receptors. Gustatory
receptors are located in the taste buds of the oral cavity.
Chemesthesis is usually reserved for nonspecific stimuili,
which are often irritating or painful. Chemoreceptive
fibers are concentrated in exterior mucous membranes,
although they occur throughout the animai.

Traditional emphasis in describing responsiveness to
chemical stimuli has been placed on taste and smell.
This emphasis is misplaced. Trigeminal chemoreception
{chemesthesis) also may be involved. The sensory affer-
ents of the trigeminal and olfactory nerves are in close
proximity in the nasal cavity, and the trigeminal and
gustatory nerves are in ciose proximity in the oral cavity.
Most chemicals can stimulate multiple sensoty afferents,
although circumstances may favor detection by one sen-
sory system over others. Except in the case of electro-
physiological studies in which specific nerve function in
response to specific chemical stimulus can be docu-
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mented, attribtiting specific sensory mediation of a
chemostimulant is not possible.

1l. CHEMESTHESIS

Chemesthesis is the perception of chemically induced
pain. A major component of the chemesthetic system
is the trigeminal nerve (TN). The TN is the principal

. somatic sensory nerve of the head, and its primary func-
tion is the coding of mechanical and thermal stimuli.

However, the trigeminal nerve also contains chemore- _

ceptive fibers that mediate the detection of chemical
irritants (Silver and Maruniak, 1980). The somatosen-
sory system is the primary somatic sensory system of
the rest of the body. Like the TN, the somatosensory
system primarily codes for mechanical and thermal stim-
uli, but it does have sensory afferents that are chemosen-
sitive (Kitchell and Erikson, 1983), though little is
known about this system in birds. Sensitivity to chemical
irritants is adaptive because animals can avoid noxious
stimuli before actual physical damage occurs.

A. Trigeminal Chemoreceptors

Chemosensitive fibers of the avian trigeminal and
somatosensory systems are similar to mammalian sen-
sory afferents. Most are unmyelinated C-type polymo-
dal nociceptors with conduction velocities of 0.3-1 m/
- sec. However, some myelinated A-delta high-threshold
mechanoreceptors with conduction velocities of 5—
40 m/sec also respond to chemical stimuli. The discharge
patterns and conduction velocities for the chicken (Gal-
lus gallus var domesticus), duck (Anas platyrhyncos),
and pigeon (Columba livia) are similar to those ob-
served in mammals {Gentle, 1989; Necker, 1974),

The underlying physiological and biochemical pro-
cesses of chemically induced pain appear to be similar
for birds and mammals. Endogenous pain-promoting
substances such as substance P, SHT, histamine, brady-
kinin, and acetylcholine evoke pain-related behaviors
in chickens, pigeons, and guinea pigs (Gentle and Hil,
1987; Gentle and Hunter, 1993; Szolcsanyi et af, 1986).
Prostaglandins that modulate the pain response in mam-
mals also subserve this function in starlings (Sturnus
vulgaris), and their effects can be abolished by prosta-
glandin biosynthase inhibitors, such as aspirinlike anal-
gesics (Clark, 1995a). However, there are profound dif-
ferences in how birds and mammals respond to
exogenous chemical stimuli. In mammals, chemicals
such as capsaicin are potent trigeminal irritants. These
irritants deplete substance P from afferent terminals
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and the dorsal root ganglion, producing an initial sensiti-
zation followed by a desensitization to further chemi-
cal stimulation (Szolcsanyi, 1982). In contrast, birds are
insensitive to capsaicin (Mason and Maruniak, 1983;
Szolcsanyi ef al.,, 1986). Peripheral presentation of cap-
saicin to pigeons and chickens does not cause release
of substance P in avian sensory afferents (Pierau ez al,
1986; Sann er al, 1987; Szolcsanyi ef al., 1986).

B. Innervation of Chemesthetic Receptors

The trigeminal nerve is the VIth cranial nerve in
birds, arising from the rostrolateral medulla near the
caudal surface of the optic lobe (Getty, 1975; Schrader,

. 1970). The TN travels along with the trochlear nerve

(IV), entering a fossa in the floor of the cranial cavity
where the trigeminal ganglion (TG) is found. The TG
is subdivided into a smaller medial ophthalmic region
and a larger lateral maxillomandibular region from
which the nerve splits into three branches. In the
chicken, the ophthalmic branch of the TN innervates
the frontal region, the eyeball, upper eyelid, conjunctiva,
glands in the orbit, the rostrodorsal part of the nasal
cavity, and the tip of the upper jaw. The ophthalmic
branch has a communicating ramus with the trochlear
nerve which serves for motor control of the eye region.
This aspect can provide for reflexive response to irritat-
ing stimuli to the ocular region. The larger medial ramus
accompanies the olfactory nerve into the nasal fossa via

~ the medial orbitonasal foramen. The macxillary branch

of the TN provides sensory input from the integument
of the crown, temporal region, rostral part of the exter-
nal ear, upper and lower eyelids, the region between
the nostrils and eye, conjunctival mucosa, the mucosal

- part of the palate, and the floor and medial wall of the

nasal cavity. The mandibular branch of the TN provides
sensory input from the skin and rhamphotheca of the
lower jaw, intermandibular skin, wattles, oral mucosa
of the rostral floor of the mouth, and the palate near
the angle of the mouth.

C. Behavioral Responseé to Chemical Stimuli

Although the morphological organization of the pe-
ripheral trigeminal system in birds is not very different
from that found in mammals (Dubbeldam and Karten,
1978; Dubbeldam and Veenman, 1978), profound func-
tional differences appear to exist (Mason ef al, 1989;
Norman et al,, 1992; Mason and Otis, 1990; Mason et
al, 1991ab). Birds rarely avoid mammalian irritants,
even though the avian trigeminal system is responsive
to chemical stimuli (Walker et al, 1979; Mason and
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Silver, 1983). For example, cedar waxwings (Bomby-
cilla cedrorum; Norman et al, 1992) are indifferent to
=1000 ppm capsaicin, the pungent principle in Capsi-
cum peppers, whereas mammals typically avoid much
lower concentrations: 100 ppm capsaicin is typically
avoided by rodents (Figure 1). Nevertheless, it is inter-
esting to note that birds can be trained to avoid mamma-
lian irritants (Mason and Clark, 1995a) and that some
trigeminal input appears to mediate the response (Ma-
son and Clark, 1995b). '

Many aromatic structures are aversive to birds
(Avery and Decker, 1991; Clark and Shah, 1991a,

1993; Crocker and Perry, 1990; Crocker et al, 1993;
Kare, 1961; Mason ef al, 1989). Several lines of evi- .
dence suggest that a variety of compounds have intrin-
sic properties that cause them to be aversive on a
purely sensory basis. First, the aversive quality is
unlearned; that is aveidance occurs upoen nitial contact
(Clark and Shah, 1991b). Second, there is no evidence
that consumption is altered by gastrointestinal feed-
back—intake of fluid treated with these sensory repel-
lents is constant over time (Clark and Mason, 1993).
Third, birds seem unable to associate the aversive
quality of the stimulus with other chemosensory cues,
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suggesting that conditioned flavor avoidance learning
does not occur (Clark, 1995b; Mason et al, 1989).
Fourth, birds do not habituate to the stimulus—
avoidance persists in the absence of reinforcement
(Clark and Shah, 1994; Mason ef al, 1989).

D. Structure—Activity Relationships for
Aromatic Stimuli

The structure-activity relationships of aromatic
avian repellents have been elucidated. An aromatic par-
ent structure is critical for repellency. Factors that affect
the delocalization of electrons around the aromatic
structure contribute to modifying the repellent effect.
Thus, acidic substituents to the benzene ring generally
detract from repellency, and this is amplified if the acidic
function is contained within the electron-withdrawing
group. Electron donation to the benzene ring enhances
repellency. Heteroatoms that distort the plane of the
aromatic structure tend to lessen repellency (Clark and
Shah, 1991a, 1994; Clark et al, 1991: Mason et al, 1991a;
Shah ez al,, 1991, 1992) (Figure 2).

E. Responses to Respiratory Stimuli

Changes in carbon dioxide concentration in the naso-
pharynx region can cause species-specific changes in
reflexive breathing in birds (Hiestand and Randall,

). Russell Mason and Larry Clark

1941). However, concentrations of carbon dioxide that
are sufficiently high to be irritating to mammals have
no effect on blood pressure, heart rate, tidal volume,
breathing frequency, upper airway resistance or lower
airway resistance in geese (Anser anser and Cygnopsis
cygnoid; Callanan et al,, 1974). Similarly, geese respond
differently than mammals to exposure to sulfur dioxide,
but in a similar manner when exposed to ammonia and
phenyl diguanide (Callanan et al,, 1974).

F. Nasal and Respiratory irritation and
Interaction of the Olfactory and
Trigeminal Systems

The trigeminal nerve is important in the perception

" of odors (Keverne er al, 1986; Silver and Maruniak,

1980; Tucker, 1971). Electrophysiological evidence
shows that the trigeminal nerve is responsive to odors,
albeit generally less sensitive than the olfactory nerve
(Tucker, 1963). Behavioral assays yield similar results.
Pigeons trained to respond to odors fail to respond after
olfactory nerve transection. However, odor responding
can be reinstated if the odor concentration is increased
(Henton, 1969; Henton et al, 1966; Michelsen, 1960).
Walker et al. (1979, 1986) found that odor sensitivity of
pigeons decreased by 2-4 log units (vapor saturation)
after olfactory nerve transection.

Although olfaction can modulate responding to
chemical irritants, it is relatively unimportant, Clark
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FIGURE 2 (Left) Consumption of food adulterated with capsaicin derivatives for rats and
starlings. Codes are CAP, capsaicin; MCAP, methyl capsaicin; VANAC, vanillyl acetamide;
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(1995a) and Mason et al. (1989) showed that avoidance
of repellent anthranilates was partially a consequence
of olfactory cues. When the olfactory nerves of starlings
were transected, avoidance of the anthranilate repel-
lents was mildly suppressed. When the ophthalmic
branches of the trigeminal nerve were cut, the starlings
became insensitive to the repellent effects of the an-
thranilates (Mason ef al,, 1989).

G. Summary

The anatomical configuration and the physiological
and biochemical processes of chemosensory afferents
of the avian trigeminal and somatosensory systems are
similar in birds and mammals. However, there are sig-
nificant differences in sensitivity to exogenous chemical
stimuli between these two taxa. Structure-activity stud-
- ies suggest that these differences may reflect different
receptor mechanisms in peripheral afferents. Confirma-
tion using molecular and pharmacological techniques is
needed to clarify this possibility.

Ili. GUSTATION

A. Taste Receptors

In comparison to other vertebrates, birds have few
taste buds (Table 1). They are distributed throughout
the oral mucosa, but most often in close association with
salivary gland openings (Berkhoudt, 1985). The greatest
aumbers are on the caudal surface of the tongue and
the pharyngeal fioor (Kare, 1971; Gentle, 1975; Kare
and Rogers, 1976). Ontogenetic changes in taste bud
number occur (Duncan, 1960). Adult chickens have
twice the number of taste buds of day-old chicks (Lin-
denmaier and Kare, 1959, Saito, 1966), However, within

TABLE 1 Absolute Number of Taste Buds in
Various Anlmals®

Species Number Source
Chicken 24 Lindemaier and Kare (1959)
Bullfinch 46 Duncan (1960)
Starling 200 Bath (1906)
Japanese quail 62 Warner et al. (1967)
Lizard 550 Schwenk {1985)
Kitten 473 Elliot (1937)

Bat 800 Moncrieff {1951}
Human 9,000 Cole (1941)

Pig 15,000 Moncrieff (1951)
Rabbit 17,600 Monerieff {1951}
Catfish 100,600 Hyman (1942)

? Madified from Kare and Mason (1986).

aduits, the number of taste buds declines with age (Bote-
zat, 1910; Duncan, 1960; Lalonde and Eglitis, 1961).

Saliva is critical for the transport of taste stimuli to
receptors (Belman and Kare, 1961). This is particularly
true for birds, since avian taste buds do not open directly
into the oral cavity via taste pores (Berkhoudt, 1985).
Although the role of saliva on avian taste responding
has not been extensively studied, there is evidence that
changes in salivary flow rate affect taste related behav-
iors. Gentle and Dewar (1981} and Gentle er al. (1981)
reported significant declines in taste avoidance by chicks
that were vitamin A and zinc deficient. These deficien-
cies lower salivary flow rate.

B. Innervation of Taste Receptors

The lingual branch of the glossopharyngeal nerve
was once considered the only gustatory nerve in birds
(Kitchell et al,, 1959; Duncan, 1960; Halpern, 1963; Ka-
dono et al., 1966; Landotlt, 1970). However, more recent
investigations show that the palatine branch of the facial
nerve (Krol and Dubbeldam, 1979) and the chorda
tympani (Berkhoudt, 1985; Gentle, 1979, 1983) also
transmit gustatory information.

C. Taste Behavior

Simple evaluations of ingestion are the most common
laboratory method used to measure the sedsitivity of
birds to taste stimuli, although operant methods have
been used (Mariotti and Fiore, 1980). Usually, the test
stimuli are presented in aqueous solution, and animals
choose between mixtures and distilled water. Chickens
show a characteristic response to aversive oral stimula-
tion typified by persistent tongue and beak movements
and head-shaking and beak-wiping behaviors (Gentle
1973,1976, 1978). No characteristic responses to presen-
tations of neutral or appetitive oral stimuli have been
observed (Gentle, 1978; Gentle and Harkin, 1979).

D. Response to Sweet

Many species show modest preferences for natural
sugars mixed with drinking water (Brindley, 1965; Brin-
dley and Prior, 1968; Duncan, 1960; Engelmann, 1934,
1937, 1960; Gentle 1972, 1975; Gunthur and Wagner,
1971; Harriman and Milner, 1969; Rensch and Neunzig,
1925; Warren and Vince, 1963). Strong preferences are
exhibited by parrots, budgerigars, hummingbirds, and
other nectar-feeders (Bradley, 1971; Hainesworth and
Wolf, 1976; Kare and Rogers, 1976, Stromberg and
Johnsen, 1990).
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A variety of granivores and some omnivores reject
sugars, perhaps for physiological reasons. For example,
red-winged blackbirds select pure water over sucrose
(Rogers and Malier, 1973; Martinez del Rio et al, 1988).
Common grackles (Quiscula quiscula), European star-
lings, cedar waxwings, and robins (Turdus migratorius),
also reject sucrose, although other sugars (e.g., fructose,
glucose) are preferred (Schuler, 1980, 1983). Brugger
and Nelms (1991), Brugger (1992), and Brugger et al.
(1992) have suggested that rejection occurs because
these birds lack the enzyme sucrase. Ingestion of sucrose
by sucrase-deficient birds causes sickness, due to malab-
sorption (Martinez del Rio, 1990; Martinez del Rio er
al., 1988; Martinez del Rioc and Stevens, 1989; Brugger
and Nelms, 1991).

Besides taste, osmotic pressure, viscosity, melting
point, nutritive quality, digestibility, and toxicity are afl
involved in birds’ response to tastes. Some have sug-
gested that visual properties and surface texture some-
times take precedence over all other qualities in the
birds’ selection of food (Engelmann, 1957; Kare and
Rogers, 1976; Morris, 1955; Kear, 1960; Mason and
Reidinger, 1983a,b). Across species, no physical or
chemical characteristic has been shown to reliably pre-
dict how a bird on an adequate diet will respond to the
taste of a solution (Kare and Medway, 1959).

E. Response to Salt

Sodium chloride rejection thresholds for 58 species
ranged from 0.35% in a parrot to 37.5% in the pine
siskin ' (Carduelis pinus; Rench and Neunzig, 1925).
Salt-eating has been reported for a number of spe-
cies (Reeks, 1920; Mousley, 1921, 1946; Pierce, 1921;
McCabe, 1927; Gorsuch, 1934; Aldrich, 1939; Marshall,
1940; Peterson, 1942; Calhoun, 1945; Packard, 1946;
Bleitz, 1958; Duncan, 1964; Cade, 1964; Dawson et al.,
1965; Mason and Espaillat, 1990). Numerous finches of
the family Carduelidae have notorious appetites for salt.
Cross-bills can be caught in traps baited with sait alone
(Welty, 1975; Willoughby, 1971). Cade (1964) suggests
that finches, which have 0.001-0.03% sodium in their
-diets (Altimann and Dittmer, 1968), are chronically so-
dium deficient,

The presence of a nasal sait gland is associated with
salt acceptance taste thresholds. Birds without such
glands generally refuse concentrations of salt that are
hypertonic to their body fluids (Bartholomew and Cade,
1958; Bartholomew and MacMillian, 1960). However,
rejection thresholds in no-choice tests do not always
predict responding in choice situations. When given a
choice, gulls (Larus spp.) (with salt glands) select pure
water over saline solution (Harriman, 1967; Harriman

and Kare, 1966). Similarly, penguins prefer fresh water
after having been at sea for extended periods (Warham,
1971). Preference could reflect the toxic effects of
chronic exposure to saline or salt waters, Mallards pos-
sess salt glands (Shoemaker, 1972), but hatching success
and duckling survival is influenced by the salinity of
drinking water in the natal marsh (Mitcham and Wobe-
ser, 1988). The order of acceptability of ionic series by
birds does not appear to fit into the lyotropic or sensitiv-
ity series reported for other animals.

F. Response to Sour

Birds are tolerant of acidic and alkaline solutions
(Fuerst and Kare, 1962; Table 2), and some species

" exhibit preferences for acid over plain tapwater (Brin-

dley and Prior, 1968). Not surprisingly, species differ-
ences exist. Rensch and Neunzig (1925) and Engelmann
(1934) reported that pigeons were more sensitive than
ducks or fowl. Engelmann (1950) also reported that
chicks were more sensitive than adults. Berkhoudt
(1985) reports that hooded crows (Corvus corone) are
profoundly sensitive to hydrochloric acid and speculates
that this sensitivity might be linked to the assessment
of the quality of carrion as potential food. Although the
ecological reason(s) for acid tolerance in some avian
species remains unclear, one possibility is that it permits
the exploitation of certain otherwise unpalatable food
resources. For example, even though starlings prefer
insect prey to fruit, juvenile starlings are less successful
in capturing animal prey than are aduits (Stevens, 1985).
Accordingly, juveniles eat large amounts of fruit be-
cause it is readily available. Much of this fruit is unripe
and sour.

Q. Response to Bitter

Avian responsiveness to bitter is enigmatic. In some
cases, compounds evoke similar responses in mammals
and birds (e.g., quinine hydrochloride; Engelmann,
1934; Gentle, 1975). In others, compounds that are ex-
tremely bitter to humans (e.g., sucrose octaacetate) are
readily accepted by birds (Halpern, 1963; Heinroth,
1938). This acceptance may reflect physiological insensi-
tivity (Kitchell ef al, 1959, Landolt, 1970). There is evi-
dence that acceptance may decrease as individuals age
(Brindley, 1965; Cane and Vince, 1968).

The bitter phenolic compounds produced by some
plants (Robinson, 1983) and utilized by various species
of pharmacophagus insects (Nishida and Fukami, 1990)
may serve as defenses against birds (e.g., Greig-Smith,
1988; Rodriguez and Levin, 1976). There is abundant
evidence that the tannin content of fruits and grain is



TABLE 2 The Influence of pH on Fluid Preferences of the Chick?

Sabstance pH1® pHZ* Versus Percentape intake®
Acetic acid 29 32 Water 16.1
Acetic acid 41 45 ©  Water 533
Acetic acid 49 7.3 Water 50.0
Acetate buffer 4.0 4.1 Acetate buffer, pH 6 47.8
Acetate buffer 4.0 4.1 Acetate buffer, pH 5 38.0
Acetate buffer 4.0 41 Water 52.1
Acetate buffer 5.1 51 ‘Water 576
Acetate buffer 51 5.1 Agetate buffer, pH 6 380
Acetate buifer 6.0 6.0 Water 54.6
Acetate buffer 6.0 6.1 Water 542
Acetate buffer 6.0 6.1 Phosphate buffer, pH 7 53.0
Acetate buffer 6.0 6.1 Phosphate buffer, pH 6 53.9
Acetate buffer 6.0 6.1 Veronal buffer, pH 7 524
Glycine buffer 23 23 Glyeine stock 6L.2
Giycine buffer 30 32 Glycine stock 528
Glycine stock 54 656 Water 50.7
Gilycine buifer 7.2 70 Glycine stock 489
Glycine buffer 90 7.8 Glycine stock 492
Glycine buffer 10.0 8.7 Glycine stock - 48.8
Glycine buffer 110 9.0 Glycine stock 49.8
Hydrochloric acid 11 11 Water 4.0
Hydrochloric acid 1.5 16 Water 18.6
Hydrochleric acid 21 21 Water 36.5
Hydrochloric acid 16 1.6 Glycine stock 247
Hydrochloric acid 1.7 17 Glycine stock 16.4
Hydrochloric acid 20 20 Glycine stock 16.4
Hydrochloric acid 21 2.1- Glycine stock 39.8
Hydrochloric acid 17 1.7 ‘Water 14.8
Hydrochloric acid 2.0 20 Water 50.0
Hydrochloric acid 30 31 Sulfuric acid, pH 3 494
Hydrochloric acid 30 32 Water 59.1
Hydrochloric acid 31 31 Sodium hydroxide, pH 10.2 533
Hydrochloric acid 4.1 74 Water 48.8
Lactic acid 23 23 Water 14.6
Lactic acid 29 30 Water 606
Lactic acid 4.1 6.7 Water 50.2
Nitric acid 11 11 Water 81
Nitric acid 20 2.0 Water 62.0
Nitric acid 30 32 Water 52.5
Phosphate buffer 6.0 6.0 Water 523
Phosphate buffer 6.0 6.0 Phosphate buffer, pH 7 53.6
Phosphate buffer 6.0 6.0 Veronal buffer, pH 7 43.0
Phosphate buffer 1.0 72 Water 49.0
Potassium hydroxide 111 9.0 Water 483
Potassium hydroxide 111 10.1 Sodium hydroxide, pH 11 47.9
Potassium hydroxide 120 112 Water 36.4
Potassium hydroxide 130 12.1 ‘Water 2.7
Sodium hydroxide 10.2 9.2 Water 450
Sodium hydroxide 11.1 9.5 Water 46.8
Sodium hydroxide 122 112 Water 333
Sodium hydroxide 13.0 124 Water 1.8
Sulfuric acid - 1.2 13 Water 152
Sulfuric acid L5 15 Water 354
Sulfuric acid 1.9 1.9 Water 54.2
Sulfuric acid 20 20 Sulfuric acid, pH 3 457
Sulfuric acid 31 32 Water 35.7
Sulfuric acid 4.1 6.9 Water 51.2
Veronal buffer 7.0 7.0 Water 518

“ From Fuerst and Kare (1962).

b pH1 = initiat.
€ pH2 = after 24 br.

9 Percentage intake = (volume of test fluid consumed/totai consumption) X 100. Each intake
percentage is the mean of 18 daily values.
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associated with resistance to bird damage (Bullard et
al, 1981; Greig-Smith et al., 1983; Mason ef al., 1984),
and laboratory preference tests show that consumption
is negatively correlated with tannin concentration (Ma-
son and Espaillat, 1990). Other phenolic substances
(e.g., phenylpropanoids, including coniferyl and cinna-
myl derivatives; Crocker and Perry, 1990; Jakubas et
al, 1992) produce analogous effects. Jakubas and his
colleagues (Jakubas et al, 1992) suggest that it may be
possible to genetically engineer crops to produce ana-
logs of coniferyl alcohol as an inherent defense against
pests and pathogens. The occurrence of coniferyl alco-
hol is widespread in higher plants because it is the pri-
mary precursor of lignin (Hahlbrock and Scheel, 1989;
Lewis and Yamamoto, 1990). It may be possible to local-
ize production of these compounds to specific plant tis-
sues-(Collins, 1986; Jakubas et al., 1992; McCallum and

- Walker, 1990). By localizing the production of repellent
phenylpropanoids to specific plant tissues, autotoxic ef-
fects could be minimized along with the impact of these
compounds on the nutritional value and palatability of
the grain,

H. Response to Other Tastes

Apart from responses to simple tastes, reactions to
more complex substances and synthetic flavors have
been reported (Kare ef al,, 1957; Romoser et al,, 1958;
Kare and Medway, 1959; Kare and Pick, 1960; Deyoe
et al.,, 1962). In general, birds are more sensitive to such
stimuli in drinking than in feeding tests.

Very few experiments have dealt with natural taste
compounds. However, there is evidence that several spe-
cies of shorebirds can discriminate between clean sand
andsand that had contained worms (Gerritsenetal,, 1984;
van Heezik ez al,, 1983). Conceivably, these birds were
detecting amino acids in mucus secretions of the worms.
Espaillatand Mason (1990) reported that both European
starlings and red-winged blackbirds detect and show
preferences toward diets adulterated with L-alanine Fig-
ure 3). Whether or not L-alanine sensitivity reflects sensi-
tivity to other free amino acids or to protein is unknown,
However, L-alanine and similar substances {e.g., L-
glutamine) occur as free amino acids in vegetable matter,
fruits, and meat (Haceral, 1949; Maeda etal., 1958; Baker
and Baker 1983). These substances could aid in food
search and selection. At least for starlings, assimilation
efficiency increases as the overall protein content of the
diet increases (Twedt, 1984).

There is also some evidence that taste sensitivity may
assist in the rejection of potentially dangerous natural
substances. Berkhoudt (1985) reports that a great-
crested grebe (Podiceps cristatus) apparently used taste
cues to reject minnows with slime infections of the epi-
dermis.

I. Temperature and Taste

The domestic fow] is acutely sensitive to the tempera-
ture of water. Acceptability decreases as the tempera-
ture of the water increases above the ambient. Fowl] can
discriminate a temperature difference of only 5°F, and
usually reject the higher temperature. Similar results
have been reported for red-winged blackbirds (Mason
and Maruniak, 1983). Chickens suffer from acute thirst
rather than drink water 10°F above their body temp-
crature. Because the response to temperature may
take precedence over all chemical stimulants (Kare and
Rogers, 1976), temperature should be eliminated as a
variable in taste studies of the fowl. The ecological rea-
son(s) underlying the interaction between taste and tem-
perature remains obscure,

J- Summary

Kare and Beauchamp (1976), in discussing the com-
parative aspects of the sense of taste in birds and mam-
mals, pointed out that most of the work on the basic
mechanism of taste has been conducted with mammals.
This mammalian work has suggested that the initial
interaction of a taste stimulus and a receptor cell occurs
on the microvilli of taste receptor cells. Although stimu-
lus—receptor interactions in avian taste are probably
similar to those described for mammals, this has not
been demonstrated.

Birds have a sense of taste. However, no pattern,
whether chemical, physical, nutritional, or physiologic,
can be correlated consistently with the bird’s taste be-
havior. The behavioral, ecologic, and chemical context
of a taste stimulant can influence the birds® response.
The observed response, particularly to sweet and bitter,
indicates that the bird does not share human taste expe-
riences. The supposition that there is a difference in
degree between individual birds and an absolute differ-
ence between some species appears warranted.

V. OLFACTION

A. Morphology of Olfactory System

Olfactory receptors are located in the olfactory epi-
thelium in the caudal conchae where each receptor ceil is
surrounded by a cluster of supporting cells. The receptor
nerve dendrite passes through these cells to the lumen,
ending in a knob bristling with 6-15 cilia. The length
of the cilia vary with species. Black vultures have cilia
of 4050 pm, while that of the domestic fow! is about
7-10 pm (Shibuya and Tucker, 1967). To gain access
to receptors, odor molecules must diffuse through a
mucous membrane. The cilia of the sensory cells have
no transport function. Rather, the secretions covering
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(Sturnus vulgaris). (From Espaillat and Mason (1990) with permission.)

the cilia provide rapid flow for transport of odor mole-
cules and must constantly be replaced to avoid receptor
habituation. Olfactory gland secretions are removed by
traction of the surrounding respiratory cilia.

The nasal conchae are important structures that in-
fluence nasal air flow dynamics and direct odors to the
olfactory epithelium (Bang, 1960, 1961, 1963, 1964, 1965,
1966; Bang and Cobb, 1968). The extent of scrolling of
the caudal conchae is correlated with the relative size

of the olfactory bulb (Bang and Wenzel, 1986). Further-
more, olfactory thresholds and relative size of the olfac-
tory buib are inversely related at the taxonomic ordinal
level; that is, orders with high olfactory thresholds have

relatively small olfactory bulbs (Clark et al., 1993; Table
3, Figure 4). These patterns suggest that the elaborated
olfactory systems belong to species with demonstrated
reliance on odor cues in the field (Stager, 1964; Hutchi-
son and Wenzel, 1980). :

B. Innervation of Olfactory Receptors

Birds have a fully developed olfactory bulb, but lack
an accessory olfactory sysiem——the vomeronasal organ
and accessory olfactory bulb (Ricke and Wenzel, 1975,
1978). However, the latter has been identified in the
early embryonic development of some birds (Matthes,
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TABLE 3 Summary of Mean Ratios of Ipsilateral Olfactory Bulb Diameter to Cerebral
Hemisphere Diameter and Their Standard Errors (SE) for Several Qrders of Birds?

Order - N Ratio SE Order N Ratio SE
Anseriformes 4 194 1.5 Psittaciformes 2 8.0 14
Apodiformes 8 123 19 :

Apterygiformes 1 34.0 0.0 Falconiformes 3 174 26
Caprirmilgiformes 3 233 07 Charadriifformes 9 16.4 09
Ciconiiformes 2 208 0.6 Galliformes 3 142 1.4
Columbiformes 2 200 14 Piciformes 5 11.4 1.3
Cuculiformes 4 9.5 0.6 Passeriformes 25 133 0.7
Gaviiformes 1 200 0.0 Pelecaniformes 4 121 16
Gruiformes 14 22 09 Coraciiformes 5 145 1.6
Podicipediformes 2 245 1.8 Sphenisciformes 1 17.0 0.0
Procellariiformes 10 29.1 14 Strigiformes 2 18.5 04

“ Data adapted from Bang and Cobb (1968}

1934). ‘The olfactory bulb is composed of concentric
structures, where the incoming olfactory nerve fibers
constitute the outer layer, The branching terminals pen-
etrate to:the adjacent, glomerular layer, where they
connect ‘with dendrites of mitral and tufted cells in
spherical arborizations called glomeruli. The perikarya
of these cells are in the deeper mitral cell layer, where
their axon leave to project to many areas of the fore-
brain. There are many interneuronal connections in the
layers between the mitral and glomerular regions. There
are no direct connections between contralateral buibs
(Rieke and Wenzel, 1978).

C. Olfactory Neuronal Response

Single and multiunit electrophysiological responses
to odor stimuli are typically taken as definitive evidence
of olfactory capacity. Electrophysiological recordings
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FIGURE 4 Relationship between detection olfactory threshold and
relative size of the olfactory bulb for different orders of birds. {From
Clark and Shah (1993) with permission. }

- Sample sizes are in terms of number of species (N).

of units and nerve fibers from mammals, amphibjans,
reptiles, and birds respond to odor stimuli in a similar
fashion, irrespective of the gross anatomical develop-
ment of the species’ olfactory apparatus {Tucker, 1965;
Shibuya and Tonosaki, 1972). In black vultures, the elec-
troolfactogram (EOG) appears during inspiration and
less so at expiration. The EQG also coincides with peak
spike activity (Shibuya and Tucker, 1967). The spike
duration of 3-4 msec is similar to that observed for the
tortoise and frog (Gesteland ef al, 1963; Shibuya and
Shibuya, 1963). Because olfactory nerve fibers are un-
myelinated, conduction velocities are slow, about 1.5 m/
sec (Macadar er al,, 1980). As is the case for mammals,
continuous presentation of the stimulus to the bird’s
receptor field will result in physiological adaptation of
the nerve units. Recovery can be achieved within afew
minutes of rest. In terms of nerve function, species with
even the most vestigial olfactory anatomies compare
favorably with those with more developed anatomies in
terms of olfactory detection thresholds (Tucker, 1965).

Olfactory nerve sections have been used to verify that
spontaneous and trained behaviors are based upon odor
cues. Transected olfactory nerves grow back within 30
days of transection and recover full physiologic capacity
to respond to odor stimuli (Tucker ef af,, 1974). Healed
nerves often were smaller, have neuromas, and are en-
meshed in scar tissue. However, electrophysiological re-
cordings and autonomic reflex responses to odorant did
not differ between controls and nerves cut 6 months or
more before (Tucker, 1971; Tucker et al, 1974).

D. Laboratory Detection and
Discrimination Capabilities
Physiological responses (e.g., change in respira-

tion or heart rate) to novel odor stimuli have been
observed (Wenzel and Sieck, 1972). However, habitua-
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tion to the stimulus under this paradigm is always
a difficulty. :

Various operant and classical conditioning paradigms
have also been employed to determine olfactory ability
(Michelsen, 1959; Henton et al, 1966; Henton, 1969).
Positive or negative reinforcement is used to make the
olfactory stimulus a “biologically” relevant cue, irre-
spective of whether the odor cue is of natural relevance
to a species. Overall, classical conditioning techniques
have proven to be relatively poor assays for olfac-
tory discrimination in birds (Calvin et al, 1957), but
conditioned suppression variants have proven to be
quite reliable (Henton et al, 1966; Clark and Mason,
1987). A generally successful assay for determining ol-
factory detection and discrimination thresholds is car-
diac conditioning (Walker et al., 1986; Clark and Mason,
1989; Clark and Smeraski, 1990; Clark, 1991a; Clark et
al, 1993). In this procedure, the odor {the conditional
stimulus) is paired with an aversive experience; for
example, shock (the unconditional stimulus). Heart
rate is compared pre- and poststimulus presentation
throughout training, when a criterion level of cardiac
acceleration is achieved as a result of the stimulus—shock
pairing, tests can proceed on detection or discrimina-
tion tasks. Most birds that have been tested have
shown olfactory capabilities comparable to mammals
(Davis, 1973), and even passerines, with the least devel-
oped olfactory system, demonstrate behavioral respon-

“siveness to odors (Clark and Mason, 1987; Clark and
Smeraski, 1990; Clark, 1991a; Clark er al, 1993) (Ta-
ble 4),

E. Oifactory Performance in the Field

The use of olfactory cues for locating food has been
documented for a number of species. Turkey vultures
are attracted to ethyl mercaptan fumes (Stager, 1964,
1967) and can locate decomposed carcasses in the ab-
sence of visual cues {Houston, 1987). Procellariiformes
can use odor cues as navigational aids in locating food
from considerable distances (Table 5). Black-footed al-
batrosses {Diomedea nigripes) are attracted to bacon
drippings from distances as great as 20 miles (Miller,
1942). Using cardiac conditioning techniques for esti-
mating odor detection thresholds, field observations,
and detailed atmospheric models of odor dispersion,
Clark and Shah (1992) estimated that the Leach’s storm
petrel (Oceanodroma leucorhoa) is capable of detecting
and homing in on an odor target for distances from 1
to 12 km.

Procellartiformes also appear to rely on olfactory
cues to locate their burrows, showing differential return
rates to their nest sites as a function of surgical manipu-

lation: control (C), sham surgery (SS), and olfactory
nerve section (ONS). For Leach’s storm petrel the re-
turn rates were C = %1%, 88 = 74%, and ONS = 0%
(Grubb, 1974). For the wedge-tailed shearwater the re-
turn rates were C = 90%, 8S = 70%, and ONS = 25%
(Shallenberger, 1975).

Pigeons can use odor cues for orientation and naviga-
tion (Papi, 1986; Wallraff, 1991; Waldvogel, 1989). How-
gver, reliance on odor cues for orientation is dependent
upon the atmospheric predictability of the cues experi-
enced during the bird’s development and early training
experience (Wiltschko et al., 1987). Pigeons can obtain
positional information when atmospheric odors are de-
rived from boundary-layer free airspace in an open land-
scape. However, positional information is obscured
when the atmosphere sample is derived from close to
ground level (Wallraff e al, 1993). When regional odor
maps cannot be relied upon because of atmospheric
instability, pigeons use a variety of alternative cues,
such as visual, magnetic, and polarized light to orient
themselves (Waldvogel, 1987).

A number of species have now been shown to be
capable of using olfactory cues to locate food. Ravens
(C. corax; Harriman and Berger, 1986), magpies (Bui-
tron and Nuechterlein, 1985), jays, crows (Goodwin,
1955), chickadees (Parus atricapillus; Jarvi and Wiklund,
1984), hummingbirds (Goldsmith and Goldsmith, 1982;
Ioale and Papi, 1989), honey guides (Archer and Glen,
1969), and kiwis (Wenzel, 1968) have all been shown
to be capable of using olfactory cues to locate and dis-
criminate between foods.

There are several intriguing studies suggesting that
odor recognition is important in the reproductive be-
havior of birds. Male mallards decreased social displays
and sexual behavior toward females when their olfac-
tory nerves were sectioned (Balthazart and Schoffen-
iels, 1979). When unfamiliar fruit odors were applied
to squabs of the ring dove (Strepiopelia risoria), parents
decreased parental care, resulting in higher mortality
of scented squabs. Bilateral olfactory nerve cuts elimi-
nated the differential feeding of the scented and con-
trol squabs (Cohen, 1981). Olfactory recognition of
parents and/or home sites may be advantageous to
young as well. Just as in mammals (Corey, 1978),
domestic chicks show neophobia to familiar nests
treated with novel odors {Jones, 1988) and demon-
strate a preference for familiar nest odors (Jones and
Faure, 1982; Wurdinger, 1982).

There is also evidence that starlings may use olfaction
to select nest material used in the fumigation of ectopar-
asites and pathogens (Clark and Mason, 1985, 1987,
1988; Clark 1991b) or in the selection of material used in
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TABLE 4 Summary of Behavioral Olfactory Thieshold Data for Different Species of Birds

Threshold (ppm)
Species Ratio* Stimulus Min Max Source®
Rock dove 180 n-Amyl acetate 0.31 29.80 569,10
Columba livig Benzaldehyde 0.47 0.75 10
Butanethiol 13,840 7
Butanol 017 130 10
n-Butyl acetate 011 259 3,10
Butyric acid 2.59 5
Ethanethiol 10,080 7
Heptane 0.29 .38 8
Hexane 1.53 298 8
Pentane 16.45 20.76 8
Chicken 15.0 Heptane G.31 0.57 8
Gallus galius Hexane 0.64 1.00 8
Pentane 1.58 222 3
Northern bobwhite — Heptane 2.14 349 8
Colinus virginianus Hexane 315 4.02 8
Pentane 7.18 10.92 8
Black-billed magpie — Butanethiol 13416 7
Pica pica Ethanethiol 8,400 7
European starling 9.7 Cyclohexanone 2.50 3
Sturnus vulgaris
Cedar waxwing — Cyclohexanone 6.80 86.46 1
Bombycilla cedrorum
Tree swallow 15.0 Cyclohexanone 7342 1
Tachycineta bicolor
Brown-headed cowbird 7.0 Ethyl butyrate 06.76 2
Molothrus ater
Catbird — Cyclohexanone 35.14 4
Dumetella carolinensis
Eastern phoebe — Cyclohexanone 35.61 4
Sayornis phoebe
European goldfinch — Cyclohexanone 13.05 4
Carduelis carduelis
Great tit — Cyclohexanone 3410 4
Parus major
Black-capped chickadee 30 Cyclohexanone 59.95 5

Parus atricapillus

®The ratio of the lon

gest axis of the olfactory bulb 1o that of the ipsilateral cerebral hemisphere.

® Sources: (1) Clark (1991a); (2} Clark and Mason (1989); (3) Clark and Smeraski (1990); (4) Clark et
al. (1993). Reprinted by permission of the publisher from {Cedar thresholds in passerines, Clark er at),
Comp. Biachem. Physiol, 104A, 305-312. Copyright 1993 by Elsevier Science Inc.; (5} Henton (1969); (6)

Henton et al. (1996); (7) Snyder and Peterson (1979); (8) Stattelman ef of. {1975); (9) Walker et af. (1979);

(10) Walker et al. (1986).

“anting” behavior, which is postulated to be a grooming
response to rid the bird of ectoparasites (Clark er al,
1990). Multiunit recordings from olfactory nerves indi-
cate starlings respond to a number of natural plant odors
and are capable of making discriminations between
complex sets of odors (Clark and Mason, 1987). How-
ever, olfactory discrimination by starlings shows a strong
correlation with breeding season (specifically nest-
building), suggesting hormonal influence on detection

and discrimination ability in this species (Clark and
Smeraski, 1990),

F. Summary

All evidence indicates that the extent of olfactory
development in birds is on par with that found in mam-
mals. Some species, such as passerines, have relatively
poorly developed olfactory capacities, though nonethe-
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TABLE 5 Summary of QOlfactory Orientation toward a Prey-Odotized Target

for Seabirds
Percentages®
Taxa Sea water Cod liver oil Source

Albatrosses

Diomedea exulans 12 0 Lequette ef ol (1989)

Phoebetria palpebrata 0 14 Lequette e al (1989)
Pelicanoididae _

Pelecanocides sp. 0 0 Lequetie et al. (1989)
Proceltariidae

Pagodroma nivea — 78 Jouventin and Robin (1984)

Pachyptila spp. ] 0 Lequette ef al. (1989)

Procellaria aequinoctialis 3 58 Lequette ef al {1989)

Muacronectes spp. 16 30 Lequette e al (1989)

Daption capense 10 . 54 Lequette e al. (1989)

Daption capense (] 82 Jouventin and Robin (1984)

Puffinus gravis 5 25 Grubb (1972)

Puffinus grisenus 67 33 Grubb (1972)
QOceanitidae

Oceanodroma leucorhoa 100 Grubb (1972}

Oceanites oceanicus 24 76 Grubb (1972)

Oceanites oceanicus 13 e Jouventin and Robin (1984)

Oceanites oceanicus 0 87 Lequette er al. (1989)

Fregetta tropica o 95 Lequette et al (1989)
Nonprocellariiformes

Larus dominicanus 11 0 Lequette er al. {1989)

Phalacrocorax atricpes G 0 Lequette et al (1989)

Sterna spp. 9 0 Lequette ef al. (198%)

9 Values are the percentage of the birds observed that were attracted to the target (control

or ¢ liver oil-spaked sponge).

less show some degree of olfactory acuity. Other species,
such as procellariiformes, have olfactory systems acutely
sensitive to odor cues. Relative io nammals, few system-
atic physiological and behavioral studies are available.
This gap in knowledge is unfortunate because there
is a well-developed anatomical database on the avian
olfactory system.
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